GIBBS PHENOMENON AND CERTAIN NONHARMONIC FOURIER SERIES
نویسندگان
چکیده
منابع مشابه
Fourier series and the Gibbs phenomenon
An understanding of Fourier series and their generalizations is important for physics and engineering students, as much for mathematical and physical insight as for applications. Students are usually confused by the so-called Gibbs phenomenon-the persistent discrepancy, an "overshoot," between a discontinuous function and its approximation by a Fourier series as the number of terms in the serie...
متن کاملSome Stability Theorems for Nonharmonic Fourier Series
The theory of nonharmonic Fourier series in L2(-ir,tr) is concerned with the completeness and expansion properties of sets of complex exponentials {e'x"'}. It is well known, for example, that the completeness of the set {e'x"'} ensures that of {e'^"'} whenever 2 lA„ ~~ M»l < oo. In this note we establish two results which guarantees that if {elX"'} is a Schauder basis for l}(—n, it), then [e'^"...
متن کاملPointwise and directional regularity of nonharmonic Fourier series
We investigate how the regularity of nonharmonic Fourier series is related to the spacing of their frequencies. This is obtained by using a transform which simultaneously captures the advantages of the Gabor and Wavelet transforms. Applications to the everywhere irregularity of solutions of some PDEs are given. We extend these results to the anisotropic setting in order to derive directional ir...
متن کاملTwo-Dimensional Gibbs Phenomenon for Fractional Fourier Series and Its Resolution
The truncated Fourier series exhibits oscillation that does not disappear as the number of terms in the truncation is increased. This paper introduces 2-D fractional Fourier series (FrFS) according to the 1-D fractional Fourier series, and finds such a Gibbs oscillation also occurs in the partial sums of FrFS for bivariate functions at a jump discontinuity. In this study, the 2-D inverse polyno...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications of the Korean Mathematical Society
سال: 2011
ISSN: 1225-1763
DOI: 10.4134/ckms.2011.26.1.089